Bentuk-bentuk lingkaran yang sering keluar dalam soal.
Lingkaran yang menyinggung sumbu x

r = b

r = a


Berikut ini beberapa contoh Soal cara menentukan persamaan lingkaran yang menyinggung garis lain
Contoh 1
Tentukan persamaan lingkaran yang berpusat di (3, –1) dan menyinggung sumbu y.
Penyelesaian:
lingkaran menyinggung sumbu y, artinya bagian samping lingkarannya menempel pada sumbu y, dan jari-jari lingkarannya adalah jarak titik pusat ke garis singgungnya.
Jika lingkaran ini kita gambarkan, akan terlihat seperti berikut.

Cara Menentukan Persamaan lingkaran yang menyinggung sumbu y
Pada gambar di atas, terlihat bahwa jari-jari lingkarannya adalah jarak titik pusat lingkaran terhadap sumbu y, yaitu 3.
Dan pusat lingkaran P(a, b) = (3, –1), artinya a = 3 dan b = –1
Substitusikan panjang jari-jari lingkaran (r = 3), nilai a = 3 dan b = –1 pada persamaan lingkaran dengan pusat O(a, b), sehingga diperoleh
(x – a)2 + (y – b)2 = r2
⇔ (x – 3)2 + (y – (–1))2 = 32
⇔ (x – 3)2 + (y + 1)2 = 9
Jadi, persamaan lingkarannya adalah (x – 3)2 + (y + 1)2 = 9
Contoh 2
Tentukan persamaan lingkaran standar dengan pusat T(3,–4) dan menyinggung garis 4x – 3y – 20 = 0.
Penyelesaian:
Karena jari-jarinya masih belum diketahui, maka langkah pertama mengerjakannya adalah mencari jari-jarinya dengan menggunakan rumus jarak titik terhadap garis.
Pada soal diketahui titik pusat lingkarannya T(1,–2)
r = jarak titik ke garis

Substitusikan panjang jari-jari lingkaran yang telah kita peroleh (r = 2), dan titik pusat lingkarannya T(1,–2) pada persamaan lingkaran, sehingga diperoleh
(x – a)2 + (y – b)2 = r2
⇔ (x – 1)2 + (y – (–2))2 = 22
⇔ (x – 1)2 + (y + 2)2 = 4
Jadi, persamaan lingkarannya adalah (x – 1)2 + (y + 2)2 = 4
Sumber: rumuspraktis.com